Schedule a demo
What's What: Introducing Enterprise Information Flow

What's What: Introducing Enterprise Information Flow

MANTA Business
August 12, 2014

What is Enterprise Information Flow? The concept is closely connected to its neighboring disciplines: Information Flow, Data Lineage Analysis and Metadata Management. But it’s not the same. This new buzzword is only beginning to be recognized, so let’s get a head start.
Information Flow focuses on information processing when it comes to security, throughput optimization and transporters; Data Lineage Analysis studies the way data is transferred between systems; and Metadata Management is all about metadata structure and purpose.
Why do we need a new concept then?

  • Big data is getting really big. From internal company systems, social networks and external data from partners to automatically collected data – a huge amount of information needs to be properly dealt with. The high volume of data is of course connected to the high volume of contributing sources: dozens of online channels, the previously mentioned social networks, portable devices, blogs, news and video content. And every source needs to be correctly described, attributed and integrated into the company’s Enterprise Information Flow.
  • Systems are getting more and more complicated. EIF needs to be ready not only for big data coming from a wide variety of channels, but also for the many different ways data is transformed and processed inside the system. Old school transformation methods like ETL and SQL scripts are easy and usually well-accounted for, but cracks start to show when it comes to the semantic analysis of non-structured data, Google’s search algorithms, Facebook’s preferential algorithms, automated quality assurance scripts or artificial intelligence methods used for predictive analysis. When it comes to transformations, it’s critical to know how security and other specific attributes change. Another key point is deciding if the information is created or just transformed.
  • New routes between systems. The number of different ways to transfer data between systems is rapidly growing. Classic ETL and extract transfers are joined by more complicated systems based on SOA, PBM and ESB. It’s also necessary to be ready for new approaches like Data Federation and Logical Data Warehouse, where data saving is not persistent.
  • Different data types. It’s not about relational data or text anymore. You need to be ready for NoSQL databases, hyperlinks, video, graphics, xml, semi-structured data and other types of information.

In complicated environments like these, current solutions fail. New approaches need to be more complex, as the new systems are. It’s necessary to follow data not only on a physical level, but also through more layers of logical abstraction. Let’s sum it up into two main angles of Enterprise Information Flow:
1) New information necessary for decision making appears. Where does it come from? When was it created? Who’s responsible for its quality? 
2) Who uses my information and how? 
Those two sets of questions are vital to Enterprise Information Flow which is a standard part of Enterprise Information Management. Any organization who takes its data seriously is searching for answers anyway, but EIF can provide a more comprehensive overview and merge existing solutions from currently separated fields into one complex policy.
A complex solution is precisely what you need, when you’re dealing with complex systems.
Stay tuned in. The discussion about Enterprise Information Flow and other topics regarding data governance and information management is going to continue on this blog throughout the coming weeks. Feel free to follow us on Twitter to be sure you don’t miss anything. You can also get in touch with the authors of this article by email or by using the contact form on the right.

Join us for a swim

Liked what you saw? There’s more! Sign up to get the latest news and subscriber-exclusive content directly in your inbox.